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Consideration is given to the flow of an elastico-viscous liquid in a curved pipe 
under a pressure gradient. The cross-section of the pipe is an ellipse, the axes of 
which are in an arbitrary position with respect to the radius of curvature of the 
pipe. The method of solution is an extension of that used by Dean (1927) and by 
Thomas & Walters (1963) in their consideration of flow through a curved pipe 
of circular cross-section. 

It is shown that the liquid elements move along the pipe in two sets of spirals. 
When the axes of the ellipse are in an asymmetrical position the streamline 
projections on the cross-section of the pipe are strongly dependent on the 
elasticity in the liquid. This is not so when the axes are in a symmetrical position. 
However, in this case, the pitch of the spirals is strongly dependent upon the 
elasticity of the liquid. 

It is also shown that the flux through the pipe is independent of the curvature 
of the pipe to first order in the curvature, 

1. Introduction 
In an earlier paper (Thomas & Walters 1963) consideration was given to the 

flow of an idealized elastico-viscous liquid in a curved pipe of circular cross- 
section under a pressure gradient. The work was suggested by Dean’s treatment 
of the associated viscous-flow problem (Dean 1927,1928). It was shown that the 
main effect of elasticity of the type considered was to decrease the curvature of 
the streamlines in the central plane of the pipe and also to increase the volume of 
fluid flowing through the pipe in unit time. The particular elastico-viscous liquid 
considered in the investigation was that designated liquid B’ by Walters ( 1 9 6 4 ,  
with equations of statet (1) pik = -pg ik  

where pik  is the stress tensor, p an arbitrary isotropic pressure, g,, the metric 
tensor of a fixed co-ordinate system xi, e(il,) the rate-of-strain tensor, and 

t Covariant suffixes are written below, contravariant s a x e s  above, and the usual 
summation convention for repeated suffixes is assumed. 
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In  these equations N ( T )  is the relaxation spectrum (Walters 1960) and 
xri ( = d i ( x ,  t ,  t '))  is the position at time t' of the element that is instantaneously 
at the point xi at time t .  The liquid designated liquid B by Oldroyd (1950) is 
a special case of liquid B' obtained by writing? 

(4) 
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N(T) = %(44/&) w + TOW1 - hz)/h,: 8(7 - 4) 
in equations (2) and (3). The Newtonian liquid of constant viscosity vo is given by 

N(7)  = T O  ( 5 )  

In  the present paper, we consider the more general problem of the flow induced 
by a pressure gradient in a curved pipe of elliptic cross-section. The effect of the 
ellipse being in an asymmetrical position with respect to the radius of curvature 
of the pipe is also investigated. So far as the authors are aware, the corresponding 
problem in viscous-flow theory has not been considered. 

2. Flow through a curved pipe 
The co-ordinate system to  be used is shown in figure 1. 0s is the axis of the 

anchor ring formed by the pipe wall. C is the centre of the section of the pipe by 
a plane through 0s making an angle 6'with a fixed axial plane. CO is the perpendi- 
cular drawn from C on to 0s and is of length R. The plane through 0 

FIGURE 1. The co-ordinate system. 

perpendicular to 0s and the line traced out by C will be called the central plane 
and the central line, respectively, of the pipe. Cartesian axes Cx and Cy are 
drawn in the section of the pipe, Cx being parallel to OC. The equation of the 
boundary of the pipe, referred to Cartesian axes CZ and Cjj (which are inclined 
to the Cx and Cy axes as shown) is taken to be 

(Z/a)2+ (j j /b)2 = 1. 

For the sake of mathematical convenience (cf. Dean 1927, 1928; Thomas & 
Walters 1963) we shall restrict attention to the case when the radius R is large 
in comparison with the dimensions of the elliptic cross-section of the pipe. The 

t S denotes a Dirac delta function defined in such a way that 
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equations of motion and the equation of continuity can then be written in the 

where U ,  V and W are the physical components of the velocity vector in the 
x,  y and 8 directions, respectively, and p is the density. In  equations (6)-(9) it  
has been assumed that the motion is steady and that U, V and W (but not p )  
are independent of 0. 

Equations (6)-(9) can be written in non-dimensionel form by using the 
following substitutions : 

being the limiting viscosity a t  small rates of shear (Walters 1960). Equations 
(6)-(9) then become 

where it has been convenient to define (cf. Dean 1927, 1928; Thomas & Walters 
1963) L = 2 W:a3/v2R. 

The boundary conditions to be associated with equations ( 2 ) ,  (11)-(14) are 
u = v = w = 0 on Ax2,+By2,+2Dx1yl = 1, where 

A = cos2 a + c2 sin2 a, 
D = (1 - c2) sin a cos a, 

B = sin2 a + c2 cos2 a, 
and c2 = a2/b2. 

t Brackets placed round suffixes will be used throughout to denote physical components 
of tensors. 
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The method of solution given below is one of successive approximation in 
which it is assumed that u, v and w can be expanded in ascending powers of L. 

When the pipe is straight (L = 0) u = v = 0 and (13) reduces to 

V2,w = - J ,  (15) 

(16) 

where V: = a2/ax2, + a2/ay;. The solution of this equation satisfying the boundary 
conditions on w is w = 1-Ax:--By2,-2Dx1y1, 

provided J = 2 + 2c2. The corresponding stress distribution is 

I Pkl*d = 07 PGlVl) = 07 P;glYl) = 07 

PtoZi) = - (2Ax1 + 3Dy1)7 (P&/j) = - (2By1 + 2 D x 1 ) 7  

&oe) = 8m[(Ax1+ Qd2 + (By1 + %)‘I1, 
rrt = Kolpa2 and KO = 7N(7) d7. 

/Om 
where 

When the pipe is curved and L is sufficiently small we assume that 

In  the following we shall work to first order in L. 
The equations of state (2) have to be used to determine the relation between 

the velocity distribution (18) and the stress distribution (19). Initially we shall 
work in terms of the original variables, using the substitutions (10) later in the 
analysis. 

The displacement functions x‘* corresponding to the velocity distribution ( 18) 
are (cf. Thomas & Walters 1963) 

1 x’ = x - Lv(t - t’) ul/a,  

9’ = y - Lv(t  - t’) vl/a 
(20) 

-&(t-t‘)w,+- R 2a 
@ ’ = 0 -  

where wo = Wo[ 1 - ( x  cos a + y sin + ( - x sin a + y cos C X ) ~ / ~ ~ ] ] .  

The rate-of-strain components e(l)mr(x’, y’, t’) occurring in the equations of 
state (2) are obtained by writing down the rate-of-strain components for the 
element a t  ( x ,  y ,  8) a t  time t ,  replacing x,  y, 0, t by x’, y’, f?’, t‘, respectively, and 
using (20). 
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In this way we obtain? 

Equations (20) and (21) can now be used to determine the physical components 
of the partial-stress tensor. After some reduction and use of (10) we obtain 

and 8, = 72N(7)d7. 
!Om 

s=-- 
p2a4 where 

It is convenient at this stage, after inspection of (9), to introduce a stream 
function x(x, y) defined by 

u = - axlay, v = axlax. (23) 

Writing x = V[LX,+L2X2+ ...,I, 
we have U, = -axl/ayl, V, = axl/8xl, etc. (34) 

Substituting ( 2 2 )  and (24) into (11) and (12) and eliminating p* ,  we obtain (on 
equating coefficients of L) 

v,4x1 = - 21 1 - Ax? - By? - 2Dx, y,] [By, + Dx,] 
- 8m[(D2 + B2)y1 + D ( A  + B ) 4 .  ( 2 5 )  

The solution of ( 2 5 )  satisfying the boundary conditions 

axl/axl = 8xl/ay1 = 0 on AX! + By; + 2Dx,y, = 1 

x1 = [l - Ax: - By: - 2 D ~ , y , ] ~  [dy! + ex: y1 +fyl + gx, + hx,y: +jx!], is (26) 
t e(lloo is neglected because it is at most of order alR and is seen to occur only in the 

expression for piee, which is itself divided by R in the stress equations of motion. 
12 Fluid Mech. 21 
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where d - j  are complicated algebraic functions of c, a and m. When a = 0, the 
formula for x1 is simplified. In  this case g = h = j = 0 and 

d = A-l[39c2 + 26c6 + 1591, 

e = A-l[3c2 + 2c4 + 75~61,  

f = - [39c2 + (212 + 180m)c4 + ( 1  114 + 1200m) c6 + (820 + 6840m) c* 

+ (375+5040m)c1°+ 2 1 0 0 m ~ ~ ~ ] / A [ l  +2c2+5c4], 

where A = 180[3 + 20c2 + 1 14c4 + 84c6 + 35cs]. Substitution from (22 )  into (13 )  
and consideration of only those terms involving L gives 

M W l  + 2m[(Ax1+ DYl) aXlPY1- (BY1 + Dx1) %!l/%ll 
= 2 [ ( 4  + DYl) axlPY1- (BY ,  + 0x1) %Y”l/a4. (28 )  

The associated boundary conditions are w1 = 0 on Ax:+ By:+2Dxlyl = 1 and 
w1 is finite at x1 = y1 = 0. After substitution from (26 ) ,  the solution of equation 
( 2 8 )  is found to be of the form 

w1 = ( - Ax: - BY: - 2Dx1y1) [Ilx: + 12x: + I& f 14x1 + I5x1y: + I6x:Y: 

~ 1 7 x ~ ~ ~ ~ ~ ” l ~ ~ ~ ~ ~ s x ~ ~ ~ ~ ~ 1 0 x l ~ ~ ~  Jl$+49:+J39:+J4y1 

+ J5!hx?  + 4Y?x:  + 4 yl”.? + &/I%! + Jg!/:x: + JloYlx;], (29 )  

where Il t o  Il0, J1 to J,, are algebraic functions of c,  a and m whose forms are too 
complicated to be given here. When a! = 0, J1 to Jlo are all zero. 

When c = 1, equations ( 2 6 )  and ( 2 9 )  reduce to those given by Thomas & 
Walters (1963) in their consideration of flow through a curved pipe of circular 
cross-section. 

3. Streamline projections 
(i) In  the plane of the pip.. The streamline projections on the cross-section of 

the pipe are represented by x1 = const., where x1 is given by (26).  Figures 2-7 
contain streamline projections for various values of c, a and m. Figures 2 , 4  and 6 
relate to an elastico-viscous liquid with m = 1 and may be compared with 
figures 3, 5 and 7 for a Newtonian liquid (m = 0).  It will be observed that the 
streamline projections are strongly dependent on the elasticity of the liquid 
when the axes of the ellipse are in an asymmetrical position but are very difficult 
to distinguish when a! = 0. 

(ii) I n  the central plane. When a! = 0, the central plane is a plane of symmetry 
(cf. figures 4, 5 )  and particles originally in this plane will remain so during the 
subsequent motion. In  this case, an investigation of the streamlines in the 
central plane can be used to study the pitch of the spirals along which the liquid 
elements move. 

The equation of the streamlines in the central plane can be shown to be 
(cf. Thomas & Walters 1963) 

1 l + x l  h-x ,  
8 =  4(h2- 1)hne In [(E) (G)] ’ 
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FIGURE 2. Paths of particles projected on the 
cross-section of the pipe for c = 0.5, a = in, 
m = 1.0. 

AY 

FIGURE 3. Paths of particles projected on the 
cross-section of the pipe for c = 0.5, a = in, 
m = 0. 
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FIGURE 4. Paths of particles projected on the 
cross-section of the pipe for c = 0.5,  a = 0, 
m = 1.0. 

FIGURE 5. Paths of particles projected on the 
cross-section of the pipe for c = 0.5, a = 0: 
172 = 0. 
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where h2 = - fle, f and e being given by (27) and n is a Reynolds number defined 
as W,apl~,. In  equation (30) i t  has been assumed that O is measured from the 
point where the streamline crosses the central line x1 = 0. When c = 1, equation 
(30) reduces to that given by Thomas & Walters (1 963) in their consideration of 
flow through a pipe of circular cross-section. 

FIGURE 6. Paths of particles projected on the 
cross-section of the pipe for c = 2.0, a = in, 
m = 1.0. 

? Y  

, 

FIGURE 7. Paths of particles projected on the 
cross-section of the pipe for c = 2.0, a = in, 
772 = 0. 

Figure 8 illustrates the dependence of the form of the streamlines in the central 
plane upon the parameter m €or a particular c, curves being drawn for m = 0, 
m = 0.1, m = 1.0 when c = 2.7 The Reynolds number used in the calculation was 
63.3 and for the sake of convenience in drawing we have assumed that a / R  is & 
(cf. Thomas & Walters 1963). It is seen that an increase in m leads to a spectacular 
decrease in the curvature of the streamlines in the central plane. 

To illustrate the dependence of the curvature of the streamlines in the central 
plane upon c we consider the quantity O,.,-the value of O calculated from (30) 
when x1 = 0.9. Curves of O0., against c are shown in figure 9 for m = 0, m = 0.1 
and m = 1.0, with n = 63.3. It will be observed that the presence of elasticity 
of the type considered has a marked effect upon Ow,, particularly when c > 1. 
For such values of c ,  O,,., increases steadily with c in the case of the Newtonian 
liquid (m = 0); on the other hand, when m > 0, d,,., tends to constant values as 
c increases. It is not difficult to show that these constant values are inversely 

t The curves for m = 0-1 and m = 1.0 have been drawn between z1 = -0.9 and 
z1 = 0.9. For the sake of presentation, the curve for m = 0 has been drawn between 
z1 = -0.9 and xl = 0.8. 
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proportional to m. When c < 1, OW9 increases steadily with decreasing c in all 
cases. In  this region, the variation of OW9 with m is less marked and all the curves 
merge as c +- 0. 

FIGURE 8. The path of a particle in the central plane for c = 2.0 and 
various values of m. 

rn = 0-1 

I I 

1 2 
C 

FIGURE 9. Graphs of OWQ against c for various values of m. 
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4. The rate of discharge of liquid through the pipe 
The rate of flow through the pipe is a constant times 

[ 1 -Ax: - By: - ZDx, y, + Lw, + . . .] dx, dy,, 
where (r is the area bounded by the curve As:+By~+2Dx,y1 = 1 and w1 is 
given by (29). When note is taken of the functional form of equation (29), it  is 
not difficult to show that w, makes no contribution to the rate of flow through 
the pipe. Hence the flux through the pipe is independent of the curvature to the 
first approximation even when the ellipse is asymmetrically placed with respect 
to the radius of curvature of the pipe. 

It has not been possible to consider the variation of flux with L2 even when 
a = 0. The simple approach used by Dean (1928) and Thomas & Walters (1963) 
in the case of a curved pipe of circular cross-section is no longer applicable, and 
the work involved in considering all the relevant second-order terms is 
prohibitive. 
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